您现在的位置是: 首页 > 成语出处大全 成语出处大全

韩信点兵的意思是什么(成语故事)_韩信点兵的意思

tamoadmin 2024-09-12 人已围观

简介问题一:韩信点兵,什么意思? 成语“韩信点兵,多多益善” 韩信点兵的成语来源淮安民间传说。常与多多益善搭配!寓意越多越好! 刘邦问他:“你觉得我可以带兵多少?” 韩信:“最多十万。” 刘邦不解的问:“那你呢?” 韩信自豪地说:“越多越好,多多益善嘛! 刘邦半开玩笑半认真的说:“那我不是打不过你?” 韩信说:“不,主公是驾驭将军的人才,不是驾驭士兵的,而将士们是专门训练

韩信点兵的意思是什么(成语故事)_韩信点兵的意思

问题一:韩信点兵,什么意思? 成语“韩信点兵,多多益善”

韩信点兵的成语来源淮安民间传说。常与多多益善搭配!寓意越多越好!

刘邦问他:“你觉得我可以带兵多少?”

韩信:“最多十万。”

刘邦不解的问:“那你呢?”

韩信自豪地说:“越多越好,多多益善嘛!

刘邦半开玩笑半认真的说:“那我不是打不过你?”

韩信说:“不,主公是驾驭将军的人才,不是驾驭士兵的,而将士们是专门训练士兵的。”

问题二:韩信点兵法的算法是什么意思?要详细! 背景:韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人。韩信马上说出人数:1049。

韩信已经知道死了四五百了,具体多少不知道/

古代时候有个《孙子算经》有几句乘法口诀:三人同行七十稀, 五树梅花廿一枝, 七子团圆正半月, 除百零五便得知。 意思是 3人一数剩下余数*70。5人一数剩下余数*21。七人一数剩下余数*15。然后+105.加到你感觉对啦就知道了。因为已知死了四五百了。

所以算法是这样的:2*70+4*21+6*15=314人

314+105+105+105+105+105+105+105=1049人。因为已知死了四五百人嘛。

问题三:茶道里什么叫做韩信点兵? 伺人把壶在茶杯上斟茶时,成心地将茶壶在杯子上往返地斟出的动作,茶道的术语叫:关公巡城也。点马者,即点兵,就是在“巡城”的动作之后,待茶壶内的茶水只剩下很小一点时,茶水在壶嘴一点一滴地流出,茶道术语称为“韩信点兵”也。择英良者,此指儿也,是“点兵”时,最后一滴茶水落到谁的杯内,他就是荣幸的。

问题四:韩信点兵,多多益善的意思 韩信点兵多多益善出处 西汉?司马迁《史记?淮阴侯列传》:上问曰:“如我能将几何?”信曰:“陛下不过能将十万。”上曰:“子有何如?”曰:“臣多多而益善善。”典故刘邦称帝后,韩信被刘邦封为楚王,不久,刘邦接到密告,说韩信接纳了项羽的旧部钟离昧,准备谋反。于是,他用谋士陈平 的计策,称自己准备巡游云梦泽,要诸侯前往陈地相会。韩信知道后,杀了钟离昧来到陈地见刘邦,刘邦便下令将韩信逮捕。押回洛阳。回到洛阳后,刘邦知道韩信并没谋反的事,又想起他过去的战功,便把他贬为淮阴侯。韩信心中十分不满;但也无可奈何。刘邦知道韩信的心思,有一天把韩信召进宫中闲谈,要他评论 一下朝中各个将领的才能,韩信一一说了。当然,那些人都不在韩信 的眼中。刘邦听了,便笑着问他:“依你看来,像我能带多少人马?”“陛下能带十万。”韩信回答。 刘邦又问:“那你呢?”“对我来说,当然越多越好!”刘邦笑着说:“你带兵多多益善,怎么会被我逮住呢?” 韩信知道自己说错了话,忙掩饰说:“陛下虽然带兵不多,但有驾驭将领的能力啊!” 刘邦见韩信降为淮阴侯后仍这么狂妄,心中很不高兴。后来,刘邦再次出征,刘邦的妻子吕后终于设计了韩信。出处《史记?淮阴候列传》韩信将兵多多益善“韩信将兵,多多益善”出自《史记?淮阴侯列传》,据记载,汉高祖刘邦曾问韩信能带多少兵,韩信回答:“臣多多益善耳”,意思就是:“越多越好”。后来,“多多益善”就成了一个成语,意即越多越好。成也萧何败也萧何:萧何(?~公元前193年),沛县(今江苏沛县)人。曾为沛县吏。秦末佐刘邦起义。起义军入咸阳,他收取秦 *** 的律令图书,掌握了全国的山川险要、郡县户口和当时的社会情况。楚汉相争时,荐韩信为大将,以丞相身份留守汉中输送士卒粮饷,支援作战。对刘邦战胜项羽、建立汉朝起了重要作用。后封侯。定律令制度,协助高祖灭诸异姓诸侯王。做《九章律》。原来,这句话与萧何举荐韩信有关。当初萧何月下追韩信,刘邦听了他的建议,任韩信为大将军。韩信统率汉军,东征西战,终于帮助刘邦打败了项羽,建立了汉朝。于是,刘邦封韩信为楚王。萧何发现了韩信这位不可多得的将才,可以说是“成也萧何”。韩信衣锦还乡后,找到了曾经帮助过他的洗衣服的老大娘,重金报答了她。他还赏了先前让他遭受胯下之辱的那个屠夫,让他做了个小官。韩信回想起来就说:“要是我当初和他拼了命,哪儿还会有今天呢?”刘邦虽然封了韩信为楚王,但一直对他心怀疑虑,生怕他造反。于是,陈平给刘邦出了主意,让他称巡游南方,然后借韩信朝见的时候诱捕他。刘邦依计而行,动身去南方巡游。刘邦来到韩信封地的边境,要韩信去朝见。韩信觉察了刘邦的意图,但觉得自己身正不怕影子斜,就坦然去见刘邦。可是,他刚到刘邦的下榻地,刘邦就大怒说:“有人告你谋反哩!”就命人把他押了起来。韩信长叹一声,说:“常言说的好:‘抓到了狡猾的兔子,猎狗就被人煮着吃了;射下了高飞的鸟儿,好用的弓箭就被收起来了;灭亡了敌对的国家,有功的谋臣就被杀掉了。’现在天下平定了,我就该死了!”刘邦把韩信押回了长安,但实在没有他谋反的证据,无法杀他,所以只好削夺了他的王位,降他为淮阴侯。韩信知道刘邦忌恨他,所以经常称病而不参加朝见。他还日夜怨恨不满,看不起樊哙、周勃这些人,不屑与他们相提并论。但是他越是心高气傲,也就越增添刘邦对他的疑心。后来,巨鹿太守陈回长安述职,前来拜访韩信,韩信就劝他谋反,自己在长安做内应。不久,陈果然造反,刘邦御驾亲征去讨伐他。韩信称病没有跟去,却在长安暗暗组织起一群囚犯,准备偷袭吕后和太子。一切都......>>

问题五:韩信点兵什么意思 一个成语,你只要知道是多多益善就行了

问题六:“韩信点兵”的本意和寓意分别是? 秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。

物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?

这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?

变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。

这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。

这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣得多。

我们换一个例子;韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?

这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。

如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。

例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。

要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。

最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。

为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+15m,分别把m=1,2,…代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。

我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:

三人同行七十稀,

五树梅花甘一枝,

七子团圆正半月,

除百零五便得知。

正半月暗指15。除百零五的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。

这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。

按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:

70×2+21×3+15×4=263,

263=2×105+53,

所以,这队士兵至少有53人。

在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:

70是5与7的倍数,而用3除余1;

21是3与7的倍数,而用5除余1;

15是3与5的倍数,而用7除余1。

因而

70×2是5与7的倍数,用3除余2;

21×3是3与7的倍数,用5除余3;

15×4是3与5的倍数,用7除余4。

如果一个数除以a余数为b,那么给这个数加上......>>

 “韩信点兵、多多益善”这个歇后语是什么意思?这句话大致意思我简要的说一下就是韩信点兵时(他是用兵奇才)兵越多对他来说就越好也就是能者用之多多益善

汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,口诀是:

三人同行七十稀,

五树梅花开一枝,

七子团圆正月半,

除百零五便得知。”

刘邦出的这道题,可用现代语言这样表述:

“一个正整数,被3除时余2,被5除时余3,被7除时余2,如果这数不超过100,求这个数。”

《孙子算经》中给出这类问题的解法:“三三数之剩二,则置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五,一百六以上,以一百五减之,即得。”用现代语言说明这个解法就是:

首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。

所求数被3除余2,则取数70×2=140,140是被5与7整除而被3除余2的数。

所求数被5除余3,则取数21×3=63,63是被3与7整除而被5除余3的数。

所求数被7除余2,则取数15×2=30,30是被3与5整除而被7除余2的数。

又,140+63+30=233,由于63与30都能被3整除,故233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。

而3、5、7的最小公倍数是105,故233加减105的整数倍后被3、5、7除的余数不会变,从而所得的数都能满足题目的要求。由于所求仅是一小队士兵的人数,这意味着人数不超过100,所以用233减去105的2倍得23即是所求。

这个算法在我国有许多名称,如“韩信点兵”,“鬼谷算”,“隔墙算”,“剪管术”,“神奇妙算”等等,题目与解法都载于我国古代重要的数学著作《孙子算经》中。一般认为这是三国或晋时的著作,比刘邦生活的年代要晚近五百年,算法口诀诗则载于明朝程大位的《算法统宗》,诗中数字隐含的口诀前面已经解释了。宋朝的数学家秦九韶把这个问题推广,并把解法称之为“大衍求一术”,这个解法传到西方后,被称为“孙子定理”或“中国剩余定理”。而韩信,则终于被刘邦的妻子吕后诛杀于未央宫。

请你试一试,用刚才的方法解下面这题:

一个数在200与400之间,它被3除余2,被7除余3,被8除余5,求该数。

(解:112×2+120×3+105×5+168k,取k=-5得该数为269。“韩信点兵、多多益善”这个歇后语是什么意思?这句话大致意思我简要的说一下就是韩信点兵时(他是用兵奇才)兵越多对他来说就越好也就是能者用之多多益善韩信点兵

汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,口诀是:

三人同行七十稀,

五树梅花开一枝,

七子团圆正月半,

除百零五便得知。”

刘邦出的这道题,可用现代语言这样表述:

“一个正整数,被3除时余2,被5除时余3,被7除时余2,如果这数不超过100,求这个数。”

《孙子算经》中给出这类问题的解法:“三三数之剩二,则置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五,一百六以上,以一百五减之,即得。”用现代语言说明这个解法就是:

首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。

所求数被3除余2,则取数70×2=140,140是被5与7整除而被3除余2的数。

所求数被5除余3,则取数21×3=63,63是被3与7整除而被5除余3的数。

所求数被7除余2,则取数15×2=30,30是被3与5整除而被7除余2的数。

又,140+63+30=233,由于63与30都能被3整除,故233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。

而3、5、7的最小公倍数是105,故233加减105的整数倍后被3、5、7除的余数不会变,从而所得的数都能满足题目的要求。由于所求仅是一小队士兵的人数,这意味着人数不超过100,所以用233减去105的2倍得23即是所求。

这个算法在我国有许多名称,如“韩信点兵”,“鬼谷算”,“隔墙算”,“剪管术”,“神奇妙算”等等,题目与解法都载于我国古代重要的数学著作《孙子算经》中。一般认为这是三国或晋时的著作,比刘邦生活的年代要晚近五百年,算法口诀诗则载于明朝程大位的《算法统宗》,诗中数字隐含的口诀前面已经解释了。宋朝的数学家秦九韶把这个问题推广,并把解法称之为“大衍求一术”,这个解法传到西方后,被称为“孙子定理”或“中国剩余定理”。而韩信,则终于被刘邦的妻子吕后诛杀于未央宫。

请你试一试,用刚才的方法解下面这题:

一个数在200与400之间,它被3除余2,被7除余3,被8除余5,求该数。

(解:112×2+120×3+105×5+168k,取k=-5得该数为269。://.chinabaike/article/81/82/105/2007/2007020617879.html“韩信点兵、多多益善”这个歇后语是什么意思?这句话大致意思我简要的说一下就是韩信点兵时(他是用兵奇才)兵越多对他来说就越好也就是能者用之多多益善韩信点兵

汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,口诀是:

三人同行七十稀,

五树梅花开一枝,

七子团圆正月半,

除百零五便得知。”

刘邦出的这道题,可用现代语言这样表述:

“一个正整数,被3除时余2,被5除时余3,被7除时余2,如果这数不超过100,求这个数。”

《孙子算经》中给出这类问题的解法:“三三数之剩二,则置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五,一百六以上,以一百五减之,即得。”用现代语言说明这个解法就是:

首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。

所求数被3除余2,则取数70×2=140,140是被5与7整除而被3除余2的数。

所求数被5除余3,则取数21×3=63,63是被3与7整除而被5除余3的数。

所求数被7除余2,则取数15×2=30,30是被3与5整除而被7除余2的数。

又,140+63+30=233,由于63与30都能被3整除,故233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。

而3、5、7的最小公倍数是105,故233加减105的整数倍后被3、5、7除的余数不会变,从而所得的数都能满足题目的要求。由于所求仅是一小队士兵的人数,这意味着人数不超过100,所以用233减去105的2倍得23即是所求。

这个算法在我国有许多名称,如“韩信点兵”,“鬼谷算”,“隔墙算”,“剪管术”,“神奇妙算”等等,题目与解法都载于我国古代重要的数学著作《孙子算经》中。一般认为这是三国或晋时的著作,比刘邦生活的年代要晚近五百年,算法口诀诗则载于明朝程大位的《算法统宗》,诗中数字隐含的口诀前面已经解释了。宋朝的数学家秦九韶把这个问题推广,并把解法称之为“大衍求一术”,这个解法传到西方后,被称为“孙子定理”或“中国剩余定理”。而韩信,则终于被刘邦的妻子吕后诛杀于未央宫。

请你试一试,用刚才的方法解下面这题:

一个数在200与400之间,它被3除余2,被7除余3,被8除余5,求该数。

(解:112×2+120×3+105×5+168k,取k=-5得该数为269。